Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Proc Natl Acad Sci U S A ; 120(24): e2216612120, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20239834

ABSTRACT

Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor-binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Single-Domain Antibodies/chemistry , Saccharomyces cerevisiae/metabolism , SARS-CoV-2 , Antibodies , Epitopes
2.
Ann N Y Acad Sci ; 1522(1): 60-73, 2023 04.
Article in English | MEDLINE | ID: covidwho-2313313

ABSTRACT

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Humans , COVID-19/pathology , COVID-19/virology , Host Microbial Interactions , Influenza, Human/pathology , Influenza, Human/virology , SARS-CoV-2 , Respiratory Syncytial Viruses , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology
3.
iScience ; 26(4): 106540, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2302196

ABSTRACT

SARS-CoV-2 variants evade current monoclonal antibody therapies. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies taking advantage of the avidity and synergy provided by targeting different epitopes. Here we used controlled Fab-arm exchange to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader antibodies that also neutralize SARS-CoV. We demonstrated that the parental antibodies rely on avidity for neutralization using bsAbs containing one irrelevant Fab arm. Using mass photometry to measure the formation of antibody:spike complexes, we determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike, observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent agents to combat circulating and future SARS-like coronaviruses.

4.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2277387

ABSTRACT

SARS-CoV-2 variants evade current monoclonal antibody therapies. Bispecific antibodies (bsAbs) combine the specificities of two distinct antibodies taking advantage of the avidity and synergy provided by targeting different epitopes. Here we used controlled Fab-arm exchange to produce bsAbs that neutralize SARS-CoV and SARS-CoV-2 variants, including Omicron and its subvariants, by combining potent SARS-CoV-2-specific neutralizing antibodies with broader antibodies that also neutralize SARS-CoV. We demonstrated that the parental antibodies rely on avidity for neutralization using bsAbs containing one irrelevant Fab arm. Using mass photometry to measure formation of antibody:spike complexes we determined that bsAbs increase binding stoichiometry compared to corresponding cocktails, without a loss of binding affinity. The heterogeneous binding pattern of bsAbs to spike, observed by negative-stain electron microscopy and mass photometry provided evidence for both intra- and inter-spike crosslinking. This study highlights the utility of cross-neutralizing antibodies for designing bivalent agents to combat circulating and future SARS-like coronaviruses. Graphical abstract

5.
J Clin Invest ; 133(8)2023 04 17.
Article in English | MEDLINE | ID: covidwho-2254335

ABSTRACT

The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Antibodies , Epitopes , Antibodies, Viral , Antibodies, Neutralizing
6.
Cell Rep Med ; 3(10): 100780, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2267177

ABSTRACT

Protein nanoparticle scaffolds are increasingly used in next-generation vaccine designs, and several have established records of clinical safety and efficacy. Yet the rules for how immune responses specific to nanoparticle scaffolds affect the immunogenicity of displayed antigens have not been established. Here we define relationships between anti-scaffold and antigen-specific antibody responses elicited by protein nanoparticle immunogens. We report that dampening anti-scaffold responses by physical masking does not enhance antigen-specific antibody responses. In a series of immunogens that all use the same nanoparticle scaffold but display four different antigens, only HIV-1 envelope glycoprotein (Env) is subdominant to the scaffold. However, we also demonstrate that scaffold-specific antibody responses can competitively inhibit antigen-specific responses when the scaffold is provided in excess. Overall, our results suggest that anti-scaffold antibody responses are unlikely to suppress antigen-specific antibody responses for protein nanoparticle immunogens in which the antigen is immunodominant over the scaffold.


Subject(s)
HIV-1 , Nanoparticles , Vaccines , HIV Antibodies , Antibody Formation , Glycoproteins
7.
iScience ; 25(12): 105649, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2122550

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses continuous challenges in combating the virus. Here, we describe vaccination strategies to broaden SARS-CoV-2 and sarbecovirus immunity by combining spike proteins based on different viruses or viral strains displayed on two-component protein nanoparticles. First, we combined spike proteins based on ancestral and Beta SARS-CoV-2 strains to broaden SARS-CoV-2 immune responses. Inclusion of Beta spike improved neutralizing antibody responses against SARS-CoV-2 Beta, Gamma, and Omicron BA.1 and BA.4/5. A third vaccination with ancestral SARS-CoV-2 spike also improved cross-neutralizing antibody responses against SARS-CoV-2 variants, in particular against the Omicron sublineages. Second, we combined SARS-CoV and SARS-CoV-2 spike proteins to broaden sarbecovirus immune responses. Adding SARS-CoV spike to a SARS-CoV-2 spike vaccine improved neutralizing responses against SARS-CoV and SARS-like bat sarbecoviruses SHC014 and WIV1. These results should inform the development of broadly active SARS-CoV-2 and pan-sarbecovirus vaccines and highlight the versatility of two-component nanoparticles for displaying diverse antigens.

8.
iScience ; 25(9): 104914, 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2069197

ABSTRACT

The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.

9.
Immunity ; 55(10): 1856-1871.e6, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2000465

ABSTRACT

Vaccines generate high-affinity antibodies by recruiting antigen-specific B cells to germinal centers (GCs), but the mechanisms governing the recruitment to GCs on secondary challenges remain unclear. Here, using preclinical SARS-CoV and HIV mouse models, we demonstrated that the antibodies elicited during primary humoral responses shaped the naive B cell recruitment to GCs during secondary exposures. The antibodies from primary responses could either enhance or, conversely, restrict the GC participation of naive B cells: broad-binding, low-affinity, and low-titer antibodies enhanced recruitment, whereas, by contrast, the high titers of high-affinity, mono-epitope-specific antibodies attenuated cognate naive B cell recruitment. Thus, the directionality and intensity of that effect was determined by antibody concentration, affinity, and epitope specificity. Circulating antibodies can, therefore, be important determinants of antigen immunogenicity. Future vaccines may need to overcome-or could, alternatively, leverage-the effects of circulating primary antibodies on subsequent naive B cell recruitment.


Subject(s)
B-Lymphocytes , Germinal Center , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antigens , Epitopes , Immunity, Humoral , Mice
10.
Sci Transl Med ; 14(657): eabl9605, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1986328

ABSTRACT

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting broadly neutralizing antibody responses to CoVs. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein with a two-shot protocol generated potent serum receptor binding domain cross-neutralizing antibody responses to both SARS-CoV-2 and SARS-CoV-1. Furthermore, responses were equally effective against most SARS-CoV-2 variants of concern (VOCs) and some were highly effective against Omicron. This result contrasts with human infection or many two-shot vaccination protocols where responses were typically more SARS-CoV-2 specific and where VOCs were less well neutralized. Structural studies showed that cloned macaque neutralizing antibodies, particularly using a given heavy chain germline gene, recognized a relatively conserved region proximal to the angiotensin converting enzyme 2 receptor binding site (RBS), whereas many frequently elicited human neutralizing antibodies targeted more variable epitopes overlapping the RBS. B cell repertoire differences between humans and macaques appeared to influence the vaccine response. The macaque neutralizing antibodies identified a pan-SARS-related virus epitope region less well targeted by human antibodies that could be exploited in rational vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Epitopes , Humans , Macaca mulatta , Spike Glycoprotein, Coronavirus
11.
Nat Commun ; 13(1): 4539, 2022 08 04.
Article in English | MEDLINE | ID: covidwho-1972604

ABSTRACT

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Epitopes , Humans , Immunoglobulin Isotypes , Receptors, Antigen, B-Cell , Spike Glycoprotein, Coronavirus
12.
Nat Immunol ; 23(6): 960-970, 2022 06.
Article in English | MEDLINE | ID: covidwho-1873528

ABSTRACT

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Spike Glycoprotein, Coronavirus
13.
Sci Adv ; 8(18): eabn2911, 2022 05 06.
Article in English | MEDLINE | ID: covidwho-1832319

ABSTRACT

Preexisting immunity against seasonal coronaviruses (CoVs) represents an important variable in predicting antibody responses and disease severity to severe acute respiratory syndrome CoV-2 (SARS-CoV-2) infections. We used electron microscopy-based polyclonal epitope mapping (EMPEM) to characterize the antibody specificities against ß-CoV spike proteins in prepandemic (PP) sera or SARS-CoV-2 convalescent (SC) sera. We observed that most PP sera had antibodies specific to seasonal human CoVs (HCoVs) OC43 and HKU1 spike proteins while the SC sera showed reactivity across all human ß-CoVs. Detailed molecular mapping of spike-antibody complexes revealed epitopes that were differentially targeted by preexisting antibodies and SC serum antibodies. Our studies provide an antigenic landscape to ß-HCoV spikes in the general population serving as a basis for cross-reactive epitope analyses in SARS-CoV-2-infected individuals.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Antibodies, Viral , Epitopes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
14.
PLoS Pathog ; 18(4): e1010465, 2022 04.
Article in English | MEDLINE | ID: covidwho-1817511

ABSTRACT

Although efficacious vaccines have significantly reduced the morbidity and mortality of COVID-19, there remains an unmet medical need for treatment options, which monoclonal antibodies (mAbs) can potentially fill. This unmet need is exacerbated by the emergence and spread of SARS-CoV-2 variants of concern (VOCs) that have shown some resistance to vaccine responses. Here we report the isolation of five neutralizing mAbs from an Indian convalescent donor, out of which two (THSC20.HVTR04 and THSC20.HVTR26) showed potent neutralization of SARS-CoV-2 VOCs at picomolar concentrations, including the Delta variant (B.1.617.2). One of these (THSC20.HVTR26) also retained activity against the Omicron variant. These two mAbs target non-overlapping epitopes on the receptor-binding domain (RBD) of the spike protein and prevent virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Furthermore, the mAb cocktail demonstrated protection against the Delta variant at low antibody doses when passively administered in the K18 hACE2 transgenic mice model, highlighting their potential as a cocktail for prophylactic and therapeutic applications. Developing the capacity to rapidly discover and develop mAbs effective against highly transmissible pathogens like coronaviruses at a local level, especially in a low- and middle-income country (LMIC) such as India, will enable prompt responses to future pandemics as an important component of global pandemic preparedness.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Mice , Spike Glycoprotein, Coronavirus
15.
Commun Biol ; 5(1): 342, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1784032

ABSTRACT

Three betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks could occur. Monoclonal antibodies targeting conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and therapeutic treatments and enable the design of vaccines aimed at providing pan-CoV protection. We previously identified a neutralizing monoclonal antibody, CV3-25 that binds to the SARS-CoV-2 spike, neutralizes the SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross neutralizes SARS-CoV-1 and binds to recombinant proteins derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show that the neutralizing activity of CV3-25 is maintained against the Alpha, Delta, Gamma and Omicron variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic potential by binding to a conserved linear peptide in the stem-helix region. Negative stain electron microscopy and a 1.74 Å crystal structure of a CV3-25/peptide complex demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to an epitope that is distinct from other stem-helix directed neutralizing mAbs.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Spike Glycoprotein, Coronavirus/chemistry
16.
NPJ Vaccines ; 7(1): 27, 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1713166

ABSTRACT

Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.

17.
Emerg Microbes Infect ; 10(1): 2016-2029, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1493580

ABSTRACT

ABSTRACTA COVID-19 vaccine that can give early protection is needed to eliminate the viral spread efficiently. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomains with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titre at two weeks post-immunization. This is significantly higher than titre caused by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by a spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for the SARS-CoV-2 virus challenge was implemented two weeks post a single dose of REVC-128 immunization. The results showed that vaccination protects hamsters against the SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage for protected animals, compared with ∼10% weight loss, high viral loads and tissue damage in unprotected animals. Furthermore, the data showed that vaccine REVC-128 is thermostable at up to 37°C for at least 4 weeks. These findings, along with a history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine to give the earliest protection against SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/chemistry , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral/blood , Antibody Formation , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Immunization , Immunization Schedule , Immunogenicity, Vaccine , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus , Vaccination , Viral Load
18.
Sci Transl Med ; 13(616): eabj5413, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1406601

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern threatens the efficacy of existing vaccines and therapeutic antibodies and underscores the need for additional antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells collected from patients with coronavirus disease 2019. The three most potent antibodies targeted distinct regions of the receptor binding domain (RBD), and all three neutralized the SARS-CoV-2 Alpha and Beta variants. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the angiotensin-converting enzyme 2 receptor, and has limited contact with key variant residues K417, E484, and N501. We designed bispecific antibodies by combining nonoverlapping specificities and identified five bispecific antibodies that inhibit SARS-CoV-2 infection at concentrations of less than 1 ng/ml. Through a distinct mode of action, three bispecific antibodies cross-linked adjacent spike proteins using dual N-terminal domain­RBD specificities. One bispecific antibody was greater than 100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a dose of 2.5 mg/kg. Two bispecific antibodies in our panel comparably neutralized the Alpha, Beta, Gamma, and Delta variants and wild-type virus. Furthermore, a bispecific antibody that neutralized the Beta variant protected hamsters against SARS-CoV-2 expressing the E484K mutation. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.


Subject(s)
Antibodies, Bispecific , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Humans , SARS-CoV-2
19.
Sci Adv ; 7(31)2021 07.
Article in English | MEDLINE | ID: covidwho-1388435

ABSTRACT

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2, and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely, viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non-neutralizing or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy polyclonal epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/chemistry , HIV Infections/immunology , HIV-1/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , AIDS Vaccines/chemistry , Animals , COVID-19/immunology , Female , HIV Antibodies/immunology , HIV-1/immunology , Humans , Macaca mulatta , Rabbits , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , env Gene Products, Human Immunodeficiency Virus/immunology
20.
Cell Rep ; 33(3): 108274, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-1385223

ABSTRACT

IGHV3-53-encoded neutralizing antibodies are commonly elicited during SARS-CoV-2 infection and target the receptor-binding domain (RBD) of the spike (S) protein. Such IGHV3-53 antibodies generally have a short CDR H3 because of structural constraints in binding the RBD (mode A). However, a small subset of IGHV3-53 antibodies to the RBD contain a longer CDR H3. Crystal structures of two IGHV3-53 neutralizing antibodies here demonstrate that a longer CDR H3 can be accommodated in a different binding mode (mode B). These two classes of IGHV3-53 antibodies both target the ACE2 receptor binding site, but with very different angles of approach and molecular interactions. Overall, these findings emphasize the versatility of IGHV3-53 in this common antibody response to SARS-CoV-2, where conserved IGHV3-53 germline-encoded features can be combined with very different CDR H3 lengths and light chains for SARS-CoV-2 RBD recognition and virus neutralization.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Complementarity Determining Regions/immunology , Coronavirus Infections/virology , Crystallography, X-Ray , Humans , Immunoglobulin Heavy Chains/immunology , Neutralization Tests , Pandemics , Pneumonia, Viral/virology , Protein Domains/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL